Short note

High spin states above the α -decaying isomer in ²¹¹Po

B. Fornal¹, R. Broda¹, W. Królas¹, T. Pawłat¹, J. Wrzesiński¹, P.J. Daly², P. Bhattacharyya², Z.W. Grabowski², C.T. Zhang², D. Bazzacco³, S. Lunardi³, C. Rossi Alvarez³, G. de Angelis⁴, D.R. Napoli⁴

¹ H. Niewodniczański Institute of Nuclear Physics, PL-31-342 Kraków, Poland

² Chemistry and Physics Departments, Purdue University, West Lafayette, IN 47907, USA

³ Dipartimento di Fisica dell'Universitá and INFN Sezione di Padova, I-35131 Padova, Italy

⁴ INFN Laboratori Nazionali di Legnaro, I-35020 Legnaro, Italy

Received: 22 September 1997 Communicated by C. Singorini

Abstract. Prompt and delayed γ -rays in nuclei of the ²⁰⁸Pb region produced in 450 MeV ⁷⁶Ge + ²⁰⁸Pb collisions have been studied at GASP. Yrast states above the α -decaying isomer in ²¹¹Po have been located including a 0.25 μ s $31/2^-$ isomer at 2135 keV and a 2 μ s isomer at 4874 keV.

PACS. 21.60.Cs Shell model – 23.20.Lv Gamma transitions and level energies – 27.80.+w $190 \le A \le 219$ – 25.70.Lm Strongly damped collisions

The 25.2 s α -decaying state with $I^{\pi}=25/2^+$ at 1462 keV in ²¹¹Po is one of the classic examples of yrast "spingap" isomers in nuclei. Many years ago, Auerbach and Talmi [1] demonstrated that in this three-particle nucleus the $(\pi h_{9/2}^2 \nu g_{9/2}) 25/2^+$ level lies below the $19/2^+$, $21/2^+$, and $23/2^+$ multiplet members because the $\pi h_{9/2} \nu g_{9/2}$ proton-neutron attraction is significantly stronger in the maximally aligned J=9 coupling than in the states with J=8,7,6,5 or 4. The level structure of ²¹¹Po is not accessible for study by heavy-ion induced fusion-evaporation reactions, and only lower spin levels up to the 1462 keV isomer have been located in ²¹¹Bi β^- decay and in ${}^{208}\text{Pb}(\alpha,n\gamma)^{211}\text{Po}$ investigations [2]. Warburton [3] has performed shell model calculations for ²¹¹Po using modified Kuo-Herling nucleon-nucleon interactions, and the results agree rather well with the experimental level spectrum up to the $25/2^+$ isomer. These calculations also predict higher lying $27/2^+$, $31/2^-$, $33/2^-$ and $37/2^+$ yrast states that should decay by γ -ray cascades feeding the $25/2^+$ isomeric state. In the present work we have investigated the yrast excitations of ²¹¹Po above the 25.2 s isomer using heavy-ion induced few-nucleon transfer reactions.

In a series of recent experiments we have shown that the yrast spectroscopy of nuclei which are not accessible in standard heavy-ion fusion-evaporation reactions, can be studied very successfully in heavy-ion multinucleon transfer processes (~15% above Coulomb barrier), using γ - γ thick target technique [4,5]. In one of these studies we used the ⁷⁶Ge+²⁰⁸Pb reaction to populate products in vicinity of ²⁰⁸Pb [6]. The experiment was performed at the Legnaro linear accelerator ALPI using pulsed beam of 450 MeV $^{76}{\rm Ge}$ ions on a target of 50 mg/cm² $^{208}{\rm Pb}$. The time spacing between beam bursts was 400 ns. Gammarays were detected with the GASP array, which consists of 40 Compton-suppressed Ge detectors and an inner BGO ball of 80 elements. The data were recorded event by event with a trigger requiring prompt firing of at least two Ge detectors. Each event stored Ge energy with timing information and the γ - RF time. Conditions set on the γ -RF and γ - γ time parameter were used to obtain the prompt, off-beam as well as prompt-delayed γ - γ matrices.

Known high spin γ -rays in the neutron-rich Pb, Bi, Po, At nuclei were clearly observed in the data and analysis of the product yield distribution indicated that also in ²¹¹Po the higher spin states should be populated.

In the N=126 nucleus ²¹⁰Po the level structure at low energies is dominated by the proton $h_{9/2}^2$ seniority-2 multiplet up to the isomeric 8⁺ state at 1557 keV. The next yrast excitation above the 8⁺ isomer is the $(\pi h_{9/2} i_{13/2}) 11^-$ state, which is also isomeric, decaying by two E3 transitions. Other known yrast isomers in ²¹⁰Po above 4 MeV have I^{π} values of 13⁻ and 16⁺ and are interpreted as core-excited states of $(\pi h_{9/2}^2) 8^+ \times 5^-$ and $(\pi h_{9/2} i_{13/2}) 11^- \times 5^-$ character involving the $(\nu g_{9/2} p_{1/2}^{-1}) 5^-$ particle-hole excitation. Turning now to the N=127 ²¹¹Po nucleus with one additional valence neutron, one may expect low-lying multiplets arising from coupling of the $\pi h_{9/2}^2$ and $\pi h_{9/2} i_{13/2}$ configurations to the $\nu g_{9/2}$ neutron, with highest spin members 25/2⁺

Fig. 1. Partial level scheme of ²¹⁰Po and the yrast level spectra established for ²¹¹Po. Arrow widths denote the relative γ -ray intensities observed in prompt-delayed coincidence with the 673 keV transition. Results of the shell model calculations from [3] are also shown

and $31/2^-$, respectively. Further, one could expect an isomeric $31/2^- \rightarrow 25/2^+$ E3 transition in ²¹¹Po analogous to the ²¹⁰Po $11^- \rightarrow 8^+$ E3.

We searched for this 211 Po ${}^{31/2^-} \rightarrow 25/2^+$ transition in the $\gamma\gamma$ prompt-delayed coincidence matrix from the 76 Ge + 208 Pb reaction by examining the cross coincidence relationship between complementary Po and Zn reaction products. Gates were set on prompt γ -rays in ⁷²Zn, ⁷⁰Zn, and 68 Zn, and delayed γ -rays de-exciting isomeric states with 10-500 ns half-lives in Po partner nuclei were displayed. These delayed transitions included known γ -rays from several Po isotopes as well as a prominent 673 keV γ ray not known previously. The intensity pattern of prompt transitions from $^{68-72}$ Zn isotopes observed in coincidence with the delayed 673 keV line indicated clearly that this γ ray occurs in the ²¹¹Po nucleus, and is thus very likely to be the sought for $31/2^- \rightarrow 25/2^+$ transition. No gammarays appeared in prompt coincidence with the 673 keV $\gamma\text{-ray,}$ but 316 and 357 keV $\gamma\text{-rays}$ in cascade parallel to the 673 keV transition were subsequently found. The 316 keV γ -ray intensity was observed to be about 2.5 times lower than that of the 357 keV γ -ray; intensity balance requirements point towards M2 character for the 357 keV transition ($\alpha_{tot} \sim 2.0$), with M1 for the 357 keV transition $(\alpha_{tot} \sim 0.3)$. These results locate an intermediate level at 1819 keV with $I^{\pi}=27/2^+$, which almost certainly corresponds to the $(\pi h_{9/2}^2 \nu i_{11/2}) 27/2^+$ predicted at about this energy in shell model calculations.

A gate on the delayed 673 keV γ -ray exhibited, in addition to γ -rays from the Zn reaction partners, a group of transitions with energies 1308, 922, 509, 731, and 1499 keV, which were thus identified as ²¹¹Po γ -rays preceding the $31/2^-$ isomer. By detailed examination of the

coincidence data, new states were located at 2866, 3443, 4365, and 4874 keV excitation energy, of which the highest is an isomer with $T_{1/2} = 2\pm 1 \ \mu$ s. The partial level scheme of ²¹¹Po is shown in Fig. 1. Analysis of the $T_{\gamma\gamma}$ time distributions between the 673 keV γ -ray and the strong transitions preceding that γ -ray (1308, 922, 509 keV) yielded the value $T_{1/2} = 0.25(7) \ \mu$ s for the $31/2^-$ state. Calculation of the B(E3) for the 673 keV transition, taking into account the 316 keV branching, gives B(E3; $31/2^- \rightarrow 25/2^+) = 57(15) \times 10^3 \ e^2 fm^6$, or 22(6) W.u.

Warburton's shell model calculations in the Kuo-Herling model space [3] predict the $31/2^-$ yrast level at 498 keV above the $25/2^+$ isomer, with the $(\pi h_{9/2}^2 \nu i_{11/2}) 27/2^+$ level in between, as was found in the present experiment. The same calculations give only two yrast states above the $31/2^-$ isomer: a $33/2^-$ level at 2655 keV arising from the $\pi h_{9/2} i_{13/2} \times \nu i_{11/2}$ coupling, and a $37/2^+$ state at 3192 keV of $\pi h_{9/2} i_{13/2} \times \nu j_{15/2}$ type. Both states should decay to the $31/2^-$ isomer by M1 and E3 transitions, respectively. The levels placed in this work at 2866 keV and 3443 keV, decaying to the $31/2^-$ isomer by 731 keV and 1308 keV transitions are probably these $33/2^-$ and $37/2^+$ excitations.

The two highest states located at 4365 and 4874 keV must involve excitation of the ²⁰⁸Pb core. The 4365 keV level decaying by 1499 keV and 922 keV γ -rays to the 33/2⁻ and 37/2⁺ states is very likely to have I^{π}=37/2⁻. The high-lying isomer at 4874 keV decays with a halflife of about 2 μ s by a 509 keV transition to the 4365 keV (37/2⁻) level. The 509 keV transition is probably of E3 character, and is a counterpart of the 686 keV E3 connecting the 16⁺ and 13⁻ states in ²¹⁰Po. Accordingly, we tentatively assign I^{π}=43/2⁺ to the 4874 keV ²¹¹Po isomer, and interpret the $(37/2^-)$ and $(43/2^+)$ levels as $(\pi h_{9/2}^2 \nu i_{11/2}) 27/2^+ \times 5^-$ and $(\pi h_{9/2} i_{13/2} \nu i_{11/2}) 33/2^- \times 5^-$ core excited states with support from simple shell model calculations using empirical single particle energies and nucleon-nucleon interactions.

This work has been supported by the Polish Scientific Committee under grant no. 2P03B-150-10, by the U.S. Department of Energy under contract no. DE-FG02-87ER40346 and by the Italian–Polish collaboration.

References

- 1. N. Auerbach and I. Talmi, Phys. Lett. 10, 297 (1964)
- 2. B. Fant et al., Nucl. Phys. A355, 171 (1981)
- 3. E. K. Warburton, Phys. Rev. C44, 1500 (1991)
- 4. R. Broda et al., Phys. Rev. Lett. 68, 1671 (1992)
- 5. B. Fornal et al., Acta Phys. Pol. **B26**, 357 (1995)
- R. Broda et al., Proceedings of the Conference on Nuclear Structure at the Limits, p. 276, Argonne, USA, July 1996